
^;xwa
x

Technical Note 1975-18

Hardware
for the

Fermat Number Transform

Prepared for tlic Hall

t:nt of th
und F19628-73-C-0002 by

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON. MASSACHUSETTS

J. H. McCIcllan

1 April 1975

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology.
This program is sponsored by the Ballistic Missile Defense Program Office,
Department of the Army; it is supported by the Ballistic Missile Defense
Advanced Technology Center under Air Force Contract F19628-73-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

W^$MM
Eu^fene C. Raabe, Lt. Col., USAF
Chief, ESD Lincoln Laboratory Project Office

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

HARDWARE FOR THE FERMAT NUMBER TRANSFORM

/. H. McCLELLAN

Group 24

TECHNICAL NOTE 1975-18

1 APRIL 1975

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS

ABSTRACT

The design and implementation of a hardware Fermat Number

Transform (FNT) is described. The arithmetic logic design is

treated in detail and a new data representation for integers

modulo a Fermat number is derived. Some results of filter

implementation with the FNT are shown to illustrate the use

of the hardware. Finally, the FNT is compared with the Fast

Fourier Transform (FFT) on the basis of hardware required for

a pipeline convolver.

m

TABLE OF CONTENTS

I. INTRODUCTION 1

II. THEORY 3

III. REPRESENTATION OF NUMBERS MODULO 2*+l 7

IV. SYSTEM DESCRIPTION 13

V. LOGIC DESIGN 21

VI. FDP PERIPHERAL 32

VII. DIAGNOSTIC PROGRAMS 37

VIII. HARDWARE COMPARISON OF THE FNT vs THE FFT 39

IX. EXAMPLES OF FILTER IMPLEMENTATION 48

X. SUMMARY 53

References 54

I. Introduction

The use of number theory transforms for implementing digital convolution

is attractive from a theoretical point of view because it is possible to

derive a transform that requires no multiplications. Since multipliers are a

major hardware expense in Fast Fourier Transform (FFT) pipeline convolvers

or in direct form convolvers, the potential for building cheaper and/or

faster convolvers should lie with number theory transforms. Many other

factors cloud the picture and the savings in multiplier hardware can be offset

by increased memory hardware and transform size in some cases. It is the purpose

of this paper to examine some of these hardware issues.

In the realm of radar signal processing, the potential for greater speed

is worth exploring. For this reason a small prototype number theory transform

has been constructed. This hardware consists of the computational element

(butterfly)for a 64-point, 16-bit Fermat Number Transform (FNT).

In the process of designing the butterfly, a new coding scheme for the

data was developed to facilitate the arithmetic operations modulo the Fermat

number. The experience gained in designing and building this hardware is the

basis for estimates of the size of pipeline FNT convolvers for possible use

in radar signal processors. The result of the hardware sizing of the FNT

versus a pipeline FFT indicates that the anticipated savings can be realized

for small systems (e.g., length 32 convolution) when the data to be filtered

is real. However, in larger systems where one must use two-dimensional convolution

to implement the one-dimensional convolution, the savings in multiplier hardware

are offset by the increased transform size and the corresponding increase in

memory size and reference spectrum multiplier hardware. In this case, when the

1

data to be filtered are real, the FNT still offers a small decrease in the amount

of hardware versus the FFT, but when the data are complex the amount of hardware

are much greater than a pipeline FFT.

Finally, some examples of FIR filter implementations using the FNT

hardware will be given, in order to illustrate the effects of precision with

this approach.

II. Theory

There is a large class of transforms which can be derived when the

underlying algebraic structure is assumed to be a finite field or ring (Ref.1)

When considering hardware implementations, however, only the Fermat number

transforms offer the dual advantages of no multiplications in the transform

and decomposition into a fast algorithm analogous to the FFT.

The FNT of { x(k)| is defined as

N-l
X(n) = £ x(k) a mod F (1)

k=0 t

where

2t th

F = 2 +1, the t- Fermat number

N is a power of 2

N
and a is an Nth root unity (i.e.,a = 1 mod F and

am ? 1 , 1 < m< N)

The notation <nk> means nk modulo N.

The only FNT's considered here are those in which a has a simple binary

representation, so that the multiplications implied in equation 1 are easy

to implement. It is possible to show that for N = 2 ,a = 2 is an Nth

root of unity [2] . In this case the multiplications in (1) become bit
3.2t-2 2t-2

shifts. Agarwal and Burrus [3] showed that a = 2 - 2 is 31

t+2 2
Nth root of unity for N = 2 . Since a = 2 mod F this a is usually

referred to as the square root of 2 and written <* = \/"2T For general F

(t > 4), N = 2 'is the largest power of 2 for which a transform can be defined.

Since v2 has a two-bit representation, multiplication by v2 can be implemented

with one subtraction. In addition, the case of N equal to a power of two

is important because it allows factorization of the transform into a

structure similar to the FFT algorithm for the Discrete Fourier Transform.

These properties of the FNT are explained in detail in reference 3 .

A fundamental constraint imposed by the transform definition is that

the wordlength of the arithmetic (determined by F) is linearly related to

the transform length. For the case « = V2, N = 4 x wordlength. It is

possible to ease this constraint by using a two-dimensional implementation

of the one-dimensional convolution [4] . With a = %/ 2 an N x N two-

dimensional transform can be defined with N = 2 . Using this two-

2
dimensional transform a one-dimensional circular convolution of length JjN

can be implemented. A 50% loss in convolutional efficiency is incurred in

2
using a two-dimensional transform, because with a length N one-dimensional

2
FFT, a length N one-dimensional circular convolution can be realized.

Returning to the definition in equation (1), note that the transform is

defined in the algebraic system of integers modulo F . Thus, the implementation

of circular convolution using (1) will result in circular convolution modulo

F . In particular, if the circular convolution

N-l

L
k=0

is computed using FNT's the result will be

Y = T. x, h (2) n r-J
n k < n-k > '

/\ N-l

n |£0 k <n-k>
[mod F (3)

It is possible to determine Y from Y if and only if Y is known a priori r n n J n r

to lie in the set [P, P + F -1] . With no prior knowledge of the ranges

of jxj} and jh, } a conservative estimate of the number of bits for x,

and h. can be made,
k

Let N = 2n and assume that]x,| < 2a and |h,| < 2b for k = 0, 1, ... N-l.
Ft-1 F -1

Then Y will be in the set [- —=— , —=—] for all possible sequences] x, }

and | h, I if and only ifn + a + b^ 2 -1. This bound is overly conservative

in most cases, but it does represent a least upper bound. Letting t = 4,

n + a + b < 15. In this case, if n = 5, (i.e., a length 21 convolution) then

a and b could both be 5, but 5 bits is probably not enough accuracy for

convolution. A more likely case would have a = b = 10 so that n + a + b = 25,

and t = 5 (33-bit arithmetic) would be necessary. For most typical filtering

32
applications a 33-bit system (i.e., a modulo 2 " + 1 system) would seem to be

most appropriate. The problems with precision in a 17-bit system can be

overcome in other ways [5] .

A drawback of the fact that the wordlength of the system must be a

power of 2 is that it is not possible to tradeoff wordlength versus performance

as is commonly done in the realization of digital filters. However, the computation

of the convolution using the FNT (or any number theoretic transform) is

exact. That is, after the quantization of the input data and the filter

coefficients, no additional quantization noise is introduced in the filtering

process. Thus, the need for simulations of the filtering process is reduced

to determining two wordlengths as opposed to present efforts that involve all

the internal precisions of the calculation [6] .

A more complete discussion of all these theoretical issues can be found

in references 1 through 5. In the following sections our attention will focus

on the hardware issues encountered in realizing the FNT.

Ill. Representation of Numbers Modulo 2 +1

3.1 Modulo 2t+l Arithmetic

In this section a new data coding scheme is described for

performing arithmetic modulo 2 +1. The main result is that modulo 2 +1

arithmetic can be implemented in a manner that is similar to l's complement

arithmetic (i.e., modulo 2^-1 arithmetic). A description of the arithmetic

operations of the FNT when the data was encoded in 2's complement notation

can be found in reference 3 . The arithmetic operations of interest are

addition, subtraction and multiplication by a power of 2, because these

are the basic operations in the butterfly of the FNT using an FFT-like structure.

Recall that in the ring of integers mod 2 +1, there are 2 +1 elements.

Thus, t + 1 bits are needed to represent all possible numbers. If a binary coding

scheme such as 2's complement were used, then whenever the MSB was one, all

the other bits would be zero. This combination would represent the number

2 . Thus, the t bit is used only in this one case. A new coding scheme

is proposed in which the collection of t+1 bits [b b ... b] represents

the number B in the following way:

1. If b =1 then B = 0

2. If b =0 then B = - (-1) t~1
2
t'1 . (_i) t~2

2
t~2 + ... _ (_i) °

That is, the jth bit has weight 2J and sign a., where

1 if b.=l
J

-1 if b.=0
J

Example 1:

Letting t=4 and 2 + 1=17,

10 0 0 0 represents zero

01010 =23-22 +2-1=5

0 0 0 11 = -23 - 22 + 2 + 1 = -9 = 8 mod 17

and 10 10 1 is an illegal combination.

Ordinarily, the representation proposed would yield only odd numbers.

However, the use of modulo 2+1 arithmetic means that both even and odd

numbers will be represented. To see this, note that

B = (2bt_1 -1) 2t_1 + (2bt_2 -1) 2t_2 + ... + (2bQ-l)

= btl 2t + bt_2 2t_1 + ... + 2bQ - (2t -1)

= (bt_2
2t_1 + ••• + 2b0 " bt-l + 2) m°d (2t + 1} (4)

The term in brackets takes on all values from +1 to 2 and the special case

of zero was handled by b = 1, so all numbers are represented.

Consider arithmetic operations using this number representation.

First of all, multiplication by a power of 2 is trivial. If the number is

zero (i.e., b =1), you do nothing. If the number is non-zero, the low order

t bits are circularly shifted to the left a number of places equal to the power

of 2, and a bit is replaced by its complement as it enters the LSB position.

This is a consequence of the fact that 2 = -1 mod (2 +1).

Example 2:

Letting t = 4 and 2 + 1 = 17, 8 is represented as 0 0 0 1 1. Applying

the above rule, 8 x 2 = 16 = 0 0 1 1 1; and 0 0 1 1 1 = 8 - 7 = -1 = 16 mod 17.

Further, 8 x 8 = 0 1 1 1 0 = 14 - 1 = 13 = 64 mod 17.

In a hardware implementation the MSB is used as a control bit. If it

is one then the number is zero and the rotation is inhibited. This is charac-

S

teristic of all operations using this new coding system.

Another easy operation is that of forming the negative of a number.

Obviously, this is done by complementing the low order t bits except in the

case where b = 1. Again, the MSB is a control bit that would inhibit the

operation if it is one. Since we how know how to form the negative of a number

and multiply by 2, the only operation left to consider is addition.

If either or both of the operands for addition are zero (i.e., b =1),

then there is no addition to take place; so these special cases can be sensed

and the addition inhibited. Now consider the addition of two numbers A and

B where A t 0 and B f 0. Let

A = Vt-i ••• ao with V°'
and B = bb ••• b with b =0.

Interpret the t LSB's of A and B as the binary representation of A and B,

and form the sum of A and B using unsigned binary addition to obtain C.

That is,

/S „t-l 0t-2
A = Vl2 + at-22 + ••• + a0
O u -it-1 , -t-2 .

+B = bt-l2 + bt-22 + ••• + b0

C = ct2 + Vl2 • ... • cQ (5)

It is possible to deduce from C the desired sum C = (A + B) mod (2 +1).

Since A = 2^ + 2 mod (2t+l) and B = 2^ + 2 mod (2t+l), C = 2A+2B+4 mod (2t+l).

If C can be expressed as C = 2C + 2 mod (2 +1) with Cat bit number, then the

t bits of C are the t LSB's of C. There are two cases, depending on the value

of c . If c - 1, then £ = + 2t + C = C - 1 mod (2t + 1).

Thus, C = (2A* + 2^+ 4) mod (2* + 1) = (2C^+ 4) mod (2t+l) = (2C + 2)

mod (2t+l), andC = C .

If c = 0 then C = 2C + 4 mod (21 +1) and the answer is C = C'+l.

However, this results in an extra level of add as in the case of l's complement

arithmetic. In l's complement the output carry is added to the LSB. In

this new mod 2 +1 arithmetic, one takes the output carry, complements

it and adds it to the LSB. Thus, the intital claim that this new arithmetic

is only as complex as l's complement is justified. There is a small amount

of additional complexity due to the control bit, but this acts only as an

inhibit signal.

Example 3:

Let t = 4 and 21 + 1 = 17.

0 10 10 = 5

0 0 0 11 = 8

1101 = 01110 =14-1= 13

5

0 MSB = 1 inhibits the addition

5

5 - 10 = -5 = 12 mod 17

0 1 0 1 0

1 0 0 0 0

0 1 0 1 0

0 1 0 1 0

0 0 1 0 1

1 1 1 1
+ 1

1 0 0 0 0 0 mod 17

10

In this last example note that the second add automatically produced the control

bit indicator for the special case of zero. Now let's examine how one converts

from a binary coded representation of numbers to this new representation.

3.2 Code Conversion

The code conversion between a binary representation and this new

code falls into two cases. Let B be a number which is represented in both

codes. Let b b ... b be the binary representation of B and

a a , ... a the new representation. Also, let B be the number re-

presented by interpreting a iat_T ••• a
n as a binary code. The

conversion rules are as follows:

1. If B = 0 then a =1, B = 0, and b = 0 for k = 0, 1, ... t. This
L K

is a special case and is done separately.

2. If B / 0 then a = 0 and B = (2B + 2) mod (2t+l). Conversion

from the new code to binary is implemented by forming 2B + 2 and comparing this

sum to 2 . If the sum is larger than 2 then 2 + 1 is subtracted to

give the proper binary representation of B.

If the binary representation is given, the sum B + 2 -1 is formed. If

the result is odd, 2 +1 is subtracted; and finally, this result is right shifted

one place. The resulting t bits are the t LSB's a ... a

Example 4:

Let t = 4 and 2Z + 1 = 17.

B = 1 0 0 0 0 = 16

fr-(16+,15-17) -i

The new representation isB =00111.

11

2. B =00 100
s

B = 4

B=2-4+2= 10 =01010.

B = 0 0 0 0 0 « *• B =10 0 0 0.
s

In section 5 this new coding scheme will be applied to the logic design

of the butterfly of the FNT algorithm. First, the overall structure of the

hardware system will be described in Section 4.

12

IV. System Description

The FNT prototype hardware is a realization of a 64-point transform

in the finite field of integers modulo 2 ' + 1. The fast FNT algorithm implemented

is a radix-2 constant geometry decimation in frequency (DIF) decomposition

of the FNT. Figure 1 shows a flow diagram of this algorithm for a 16-point

transform (Ref. 7). The constant geometry structure was chosen because

it simplifies the memory addressing and the rotation control.

Figure 2 is a block diagram of the complete system showing the four

major subsystems. The computational element (CE) is a radix-2 DIF butterfly

for the fast FNT algorithm; the memory element contains 128 seventeen-bit

words for use as intermediate storage during the transform; the control

element is a hardwired implementation of the fast FNT algorithm; and the I/O

section provides the interface with the Fast Digital Processor (FDP).

The goal in building this hardware was to construct a CE that would operate

at a data rate of 40 MHz. In order to achieve this speed, ECL 10K circuits

were used. The basic gate in this logic family has a propagation delay of

2 nanoseconds, and thus these circuits are well suited for very high speed

systems. Even with such high speed logic circuits, two levels of reclock

and fast carry addition were used in the CE to realize a working system that

runs reliably at 38 MHz. In the remainder of this section we will describe

the major subsystems of the FNT hardware.

4.1 The Computational Element

The basic computational element of the FNT consists of an adder,

a subtractor, and a rotator for multiplication by powers of \/2. Since

13

18-2-12391

Fig. 1. Radix-2, 16-point, constant geometry FFT (decimation in frequency)

14

CL
Q

w> li.
OJ

1

CO X T

UJ
O
<

O U.

E
h- <u
2 •M

t/1

i I o* <1>
i- tr w

X) 1 o £ h
¥ p o w nj

X

H
X Z 7.

en _i o O U,

UlOH Uj W +->
UJ CE ^ c

O

O O ^ CX,

< O • o i l «fr
•tf o vO

— UJ i 1

(- 2 <4H
< O O
1- Q.
2 x § 1 ! CE UJ c3

(-1
U>
CO

5< tr
' '

•H

,* m.
•v U

O
i-H

N^

' r
CQ

\ ' rsi
N _i

t
\~ < ci
\ •H

PL.

is t i-t- ui

F
N

M

P
U

T
A

E

L
E

M

w \ *^
]! h- O

o
i/;

^s§^
§

IS

k k
. ^ 2k +k 1 t-~ 0

(v2) = (v2) 1 0 = 2 (v2) > where k = 0 or 1, the rotator can be

divided into two operations: a v2 mutiplier (implemented as a subtractor)
kl with a possible inhibit if k,= 0 and a 2 multiplier implemented via a 16:1

multiplexer (see Figure 3). The butterfly must be reclocked twice in order

to achieve the 25 nsec clock epoch. Addition (or subtraction) of two 16-bit

words modulo 2 +1 using carry look ahead addition is just fast enough to

fit into the 25-nsec clock epoch. Thus, it is natural to reclock after the first

stage of add and subtract and after theyJ2 multiplication. The multiplication

by powers of 2 must be implemented using a 16:1 multiplexer arrangement in order

to fit into the 25—nsec clock epoch. A shift register implementation would

not be economical at such high rates.

4.2 The Memory Element

The memory element contains 128 17-bit words. It was constructed

using 17 F10405 128 x 1 ECL RAM's. The access time for these RAM's is less than

15-nsec, so they are well within the speed requirements of the system. For

a 64»point transform one only needs 64 words of memory if the transform is

done in place. However, in the choice of IC's for the memory element it

was economical to select a 128-word chip, and so the constant geometry

structure of Figure 1 was employed. In this form of the fast FNT algorithm,

the transform is not done in place. Thus, the memory required is twice that

of an in place algorithm. However, the memory addressing is simplified because

it does not depend on which stage of the transform you are doing. Since there

is only one word per memory cell, two memory accesses are required to read

the two operands needed for the butterfly. Similarly, two memory write cycles

16

CLOCK(

ADDER

FROM MEMORY ll-!-l?«00i

SUBTRACTER

SUBTRACTER

LSB

ROTATION
EXPONENT

(5 bits)

H

MULTIPLEXER

4MSB» > 16: I
MULTIPLEXER

21
MULTIPLEXER

T
TO MEMORY

Fig. 3. Block diagram of the computational element of the FNT system.

17

are required to store the results of a butterfly, and the two data paths are

multiplexed into the memory. Thus, a total of four memory accesses are needed

in the course of one butterfly. In an actual pipeline structure there would

be four distinct interstage delay memories serving one butterfly. Two memories

would provide the input operands and two more would acquire the output operands

on each clock pulse.

4.3 The Control Element

The control element is the hardware implementation of the FNT

algorithm. It controls the reading and writing of memory during the transform

and determines the power of vz for rotation. The system operation is broken

down into 8 states. Six of these states correspond to the six stages of

the transform; the other two states are for synchronization and I/O. When

the device is doing a transform the basic timing diagram of the elementary

computation is shown in Figure 4. There are six time states, each 25 nsec

long. During t„ and t1 the two operands A and B needed for the transfoi >rm

are read from memory (see Figure 3). During t~, A + B and A - B are formed.

During t,, A - B is multiplied by 1 or-s/2-and C = A + B is set up to be written

back to memory. During t , further rotation of A - B by a power of 2 is

done, D = (A-B) x 2 is set up for its return to memory, and C is written

into memory. Finally, during t_,D is written into memory. Within each stage

a counter keeps track of the fact that 32 butterflies must be executed during

each stage and 64 operands must be accessed. The rotation value T is a function

of this counter and the stage counter.

^J
UJ
5

N

UJ

cr
5 B

2 M 4->
UJ

t
>-

to 1
2 X . |

1/1

JC H
M CVJ 2

UJ tu

* r-*~~"^ i- OJ *- tr X
$ V +->

t IH
M O

^^^^^^ 1
| >~0A S^

i T 1—I

>- $ I*
_l > <K o U.
or
UJ

r
+J
3

m Y- X3
OJ \-

CO $ X

• 1 ' •
CD

+

t
CD

1

+J

- . h
£

d <t e
cti

CJ *0***~^ !H

*• DO

•H

CD X)

' 1 * <
1

t c
•H . 2

CD UJ B
•H
H

Q
— #- *!

111
or ^r

GD M

• t • H
U,

.
UJ
5

Q
o < *- UJ

Q

i

19

4.4 The I/O Element

The I/O section handles all handshaking with the FDP in order to

transfer data back and forth. Communication is always two-way. Thus, whenever

the FDP sends a word to the FNT, the FNT is also sending a word to the FDP.

The memory element is used as a buffer memory for I/O transfers. Data is

transferred in blocks of 64 words. While the 64 data points to be transformed

are being sent to the FNT, the 64 output points from the previous transform

are being received from the FNT. Data from the FDP is loaded in linear sequence,

but it is read out in bit reversed order when being sent to the FDP. Since

the result of the transform is in bit reversed order, this bit reversed

read out of memory will undo the bit reversal of the FNT. Thus, the data

in the FDP is always in normal order.

The code conversion from 2's complement to the code described in section

3 above is also performed in the I/O section before the memory is loaded. A

similar conversion back to 2's complement is also done in the I/O section.

20

V. Logic Design

In this section the logic design of the major elements of the FNT

system will be described. The description will concentrate on the arithmetic

section which implements the butterfly of the fast FNT algorithm. A basic

objective of the logic design was to construct a butterfly which would operate

at a data rate of 40 MHz. For this reason ECL 10K logic was employed in the

entire system and the butterfly was pipelined with two levels of reclock.

The other subsystems will also be reviewed,but the emphasis will be on

their relation to the fast FNT algorithm.

5.1 The Computational Element

Figure 3 shows a functional diagram of the butterfly which

consists of an adder, a subtractor, a rotator, input buffer registers R.

and RR, reclock registers Rw, R , and R,^ and an output register R . Register

transfers are made at each clock pulse, so that data are always flowing through

the CE as would be the case in a pipelined fast FNT. As the timing diagram

in Figure 4 shows, the output of the butterfly is only written into memory

from Rz at t. and t,.. During the other clock epochs the contents of R7 may

be changing, but this does not affect the algorithm.

5.1.1 Adder (Subtractor) Logic:

In Section 3 a nonstandard coding scheme for data manipulation

in the FNT was derived. Recall that the rule for addition of two non-

zero numbers A = a..a1r ... a.. I and B = b1£ b,_ ... b. is:
[lo 15 UJ I ID ID L)J

Step 1: Add the 16 LSB's of A and B with the carry in equal to zero.

Step 2. Complement the carry out from step 1 and add it to the sum
from step 1.

21

If either A or B is zero (i.e., b.., or a,. = 1) then the carry must
lo lb

be inhibited. Finally if both A and B are zero the MSB of the sum is

set to one. Figure 5 shows a realization of the addition process. The

structure of Figure 5 is inefficient in two respects. First of all,

two 16-bit adders are required, although the second one is simple

because one input is zero. Secondly, the addition is very slow because

the carry must propagate through both 16-bit adders. The use of carry

look ahead logic as in Figure 6 will improve both situations. Now

let's look at the details of the implementation using ECL building

blocks.

The 16-bit adder can be realized using 4MC10181 arithmetic logic

units (ALU's). Figure 7 shows a block diagram of the 4-bit ALU. In

addition to producing the sum outputs, the ALU's also produce carry

propagate and carry generate information for use in a carry lookahead

block. Thus, the CLA block of Figure 6 is physically spread between

the ALU's and a carry lookahead logic unit (MC10179). The addition

process can be speeded up further if the carries into each ALU are

formed in parallel from the output of the CLA logic. Then the add time

will bereduced by 3 x (propagation delay time from C to C).

For the MC10181 this is approximately 10 nsec which is significant for

realizing a 25-nsec clock epoch. Figure 8 shows the final realization

of the 25-nsec adder. The logic expressions for the carries were derived

from the fact that C . = P C + G for each ALU.
n+4 n n n

22

B16 A16
Q 0

[BIVBo] [AI5- -Ao]

i-16 Jp 16

18-2-12393

'16
CARRY IN = 0

CARRY OUT

ZERO

J^ 16

SUM

16-bit ADDER

^J "

CARRY IN

16

I 15-0

17- bit RESULT

16 Fig. 5. Fermat number adder (modulo 2 +1) using two 16-bit adders

25

B16<? <?A16
[B,5-Bo] [A,5--Ao]

Q 0

18-2-12394

CARRY OUT

1
CARRY

LOOK AHEAD
LOGIC

CARRY IN = 0

'16

16

Q 6

16-bit ADDER

/

1

'16
1

CARRY IN

16

'15-0

17-bit RESULT

Fig. 6. Fermat number adder implemented with carry look ahead addition.

24

CARRY
PROPAGATE

CARRY OUT

CARRY
GENERATE

B

I
B B B B

3 2 10

'n +4

1
A [18-2-12398

4

A A A A 3 2 10

4-bit

ALU

I S I I ^3^2 1 0

SUM

CARRY IN
"*——O

• CARRY EQUATION^ Cn + 4 = Pn Cn 4-G„

Fig. 7. Functional block diagram of the MC10181 ALU in the addition mode.

25

>

^>

j^r
_ w

•-n
O
3 a"

• H
C

-C
CJ
o

>,
u
u
u

CO
c-j

c
•H
1/1

u
O

"3
TD
rt
i-
o

1
c

•M
rj

CD

X!

o
E A
0) u

M c/)
03 C

•H
T3 iH

CM
CJ >|

M
O

00 -M

O0T3
•H nj

26

Worst case add time was calculated to be 24 nsec and was measured

as 21 nsec. The flip flop setting time and setup time account for the

remainder of the 25-nsec epoch.

As noted above the subtractor, A-B can be implemented by complementing

B and adding it to A. The use of the MC10181 ALU allows the B input to be

complemented internal to the 10181 via mode control. This results in a

slight design change in the adder unless the complement is inhibited when

B is zero.

The addition A + B completes the calculation on one rail of

CE. The result is held in the register R and then is moved to R

to be written back into memory. On the other rail of the CE, the

quantity A-B is stored in the reclock register Ry for subsequent rotation

by a power of-v/2.

5.1.2 Rotation by-^2

The rotation by "^2 is split into two stages, each requiring

a 25-nsec epoch. In the first stage, the quantity X = A - B is

multiplied by A/2 if k is odd. The -^2 multiplier is merely a subtracter.

However, since the output is zero whenever the input is zero, some

simplification of the subtractor logic results, and the subtraction

time is reduced. A 2:1 multiplexer at the output of the sub-

tractor selects whether the input is to be multiplied by^2 or by 1, and

is controlled by the LSB of k. The result of this calculation is stored

in the reclock register R„. The second stage of the rotation is a multiplication

by a power of 2, namely y • (|_ J denotes the greatest integer function.)

27

This multiplication is implemented as a 16:1 multiplexer controlled

by the upper four bits of the binary representation of the power of 2.

Actually the 16:1 multiplexer is realized as a cascade of two 4:1

multiplexers with inverters for the end around shifts. The shifting

network is followed by a 2:1 multiplexer which selects which butterfly

output (A + B or 2 • Y) is to be stored in R-, and then written back into

memory. This multiplexer is controlled by t, and its output is (2 • Y)•

t3 + W • t,. This completes the description of the CE; the other

elements of the FNT will now be described.

5.2 The Control Element and Memory Element

The control logic is the realization of the Fermat Number

Transform algorithm. There are three levels of control and each is driven by

a binary counter. The highest level of control consists of 8 states formed

from the 3-bit S counter. Six of these states (S , S ...S) correspond to the

six transform stages; S is a synchronization state; and S is the I/O state.

The second level of control is the indexing within a stage of the FNT.

A seven-bit counter, called the K counter, is employed. Within a transform

stage or in the I/O state the K counter increments 64 times because each

data point must be referenced once. When the 64th count is reached, the S counter

is incremented. The K counter is used to form the memory address and the power

of J2 for rotation. The 7 bits are required for addressing all 128 words of

memory.

The lowest level of control is the time state counter called the T

counter. The time state counter consists of the six states t„, t , ... t,. and

determines the sequence of operations in the butterfly.

28

The realization of the FNT algorithm requires the formation of memory

addresses and rotation exponents from the three control counters. Letting

K = K , K ...K„ , the rotation exponent (called twiddle control) is

where T4 T3 •

K5 K4 K3 K2 Kl

K5 K4 K3 K2 0

T = / K K. KT 0 0
5 4 3

Kr K. 0 0 0 5 4

K5 0 0 0 0

0 0 0 0 0

when S = (0 0 0) = s

S = (0 0 1) = s.

S = (0 1 0) = s.

S = (0 1 1) = S,

S = (1 0 0) = s^

S = (1 0 1) = sc

0

The memory address is formed in one of four ways depending on the counters.

When memory is being written, the MAR is equal to K, and the K counter is

incremented after the write. When the memory is being read during the trans-

form, there are two possible memory addresses. During t„, the MAR is

K6 0 K K = pQ(K); during t , the MAR is K 1 K ... 1^ PjCK).

Finally, during I/O the memory is used in bit reversed order and the MAR

equals [K^... K5j .

In order to complete the specification of the control of the FNT,

a register transfer sequence is provided below. This corresponds to the timing

diagram in Figure 4.

29

Comments
tn • CL: MAR = P (k) Read operand A from memory

""" o'
MDR •*• Rr

t1 • CL: MAR = P1(k) Read operand B from memory

RB+RA
MDR-* RD

t • CL: SUM (A, B) -»• Rtf A + B and A - B

DIFF (A, B) -»• R
A

t3 • CL: Rw -> R _. J2 Multiplication

T • MUL {\2, X) +

°^o ' VRY

t • CL: MAR = K Write Memory

K + 1 •*• K

R7 •+ Mem
L k

ROT (T , Y) •> R Multiply by 2

t • CL: MAR = K Write Memory

K + 1 ^K

R_->- Mem

5.3 The I/O Element

The I/O element was designed to provide asynchronous transfer

of data between the FNT system and the FDP. The I/O is enabled only when

the S counter is in state s . An input request (IR) from the FDP is first

synchronized to the FNT clock and then the following I/O sequence takes place:

1. The memory is read with the bit-reversed address, MAR =

[K. Kn ... K_ . The output is stored in register R_. The output
o U 5J fc

of R is code converted to 2's complement and is transmitted to the

FDP.

30

2. The input acknowledge line (IA) is raised approximately

50-100 nsec after the acceptance of the IR.

3. Data are written into the memory after being code converted

from 2's complement to the new code used internal to the FNT. This

memory write occurs approximately 250 nsec after the acceptance of the

IR. The K counter is incremented after the write.

4. The IA is cleared after 1.2 psec and is held down for a

minimum of 200 nsec.

The data rate achievable with this interface to the FDP is approximately

one word every 1.5 Msec.

31

VI. FDP Peripheral

In this section the operation of the FNT system as an FDP peripheral

device will be described. Two topics will be discussed: the operation of the

manual controls of the FNT and the constraints to be observed by FDP programs that

use the FNT.

Figure 9 shows the layout of the control panel of the FNT. The function

of the switches and lights is as follows:

1. S/R Switch: The Stop/Run switch is a two position switch. When

the switch is in the down position the FNT is in the run mode and normal (full

speed) operation of the hardware is enabled. When the switch is placed in the up

position, the FNT is stopped. The stop condition is indicated by the red light

above the S/R switch. In the stop mode, depressing the CYCLE button will step

the machine by one clock cycle. This feature was used for debugging the hardware

and shouldn't concern the programmer.

2. The MEM.T switch is a two position switch that will allow the memory

element of the FNT to be tested. When this switch is in the down position,

the FNT is in transform mode. When the switch is in the up position, the device

is in the memory test mode and the butterfly is disabled. A red light above the

MEM.T switch signifies that the FNT is in memory test mode. In this mode data

transferred from the FDP to the FNT are returned to the FDP unchanged except for

a bit reversal. This bit reversal results from the I/O addressing modes described

in Section V. A diagnostic program uses this mode to check for the proper operation

of the memory.

3. The RESET button is used to initialize the FNT machine. When the

button is depressed, all counters are initialized and the system is put in the

32

CO

CNJ

1-
cr
LU

LLI V*>' 2 cr O ^ S\ z u.
0 CE l((C _J c/)

LU $ *^ 3? (-2
Q.

LU

o

c
•H

u
e
H

4H
o

o
c a

•M
c
o

•H
U-

33

synchronization state. For proper initialization the FNT should be stopped when

a RESET is done.

4. The CYCLE button, when pushed, will step the machine by one

clock pulse if the FNT is stopped. If the machine is in RUN mode, the CYCLE

button has no effect.

5. The I/O light signifies that the FNT is in the I/O state where

it is waiting for I/O with the FDP.

Initialization of the FNT for use in the transform mode requires

the following steps.

(i) Place MEM.T switch in the down position. The red light above the

switch should be off.

(ii) Place the S/R switch in the up position. The red "Stop" light

should come on.

(iii) Press the RESET button and hold in for 1 or 2 seconds. The I/O

light should be off after this operation.

(iv) Place the S/R switch in the "run" position (i.e., down). The "stop"

light should go off and the I/O light should come on. Now the device is initialized

and ready to accept data from the FDP. We now turn to a discussion of the pro-

gramming features of the FNT.

The FNT is connected to the FDP via subchannel 6 of I/O channel 1. Since

data communication between the two machines is always full duplex, the I/O hand-

shaking is done using the control signals of the FDP input channel. Thus, the

execution of an IOC instruction which sets the input request line will cause

the FNT to take as input the contents of the FDP E register and to send an output

word which will be strobed into the E. register of the FDP. The timing of the I/O

54

transfers allows E to be loaded in the same instruction as the IOC. Thus,
o

the following instruction is valid.

TME DATA 0 0 IOC 3 3 0 0 15

In order to do a transform 64 data points must be loaded into the FNT.

The FNT machine automatically starts the calculation of the transform when

the 64th data point arrives. At the present 38-MHz clock rate, the transform takes

about 30 /xsec. To obtain the results of the transform 64 more I/O transfers must

be done. The full duplex mode of operation allows one to load data for a new

transform and obtain the results of the previous transform at the same time.

Since the I/O of 64 data points takes 2 or 3 times as long as the transform

itself, this is an important factor for obtaining maximum performance from

the machine.

In order to do convolution using the FNT hardware, it is necessary to do

the reference spectrum multiplication (mod 2 + 1) in the FDP. A possible program

to do this is given below. The program will multiply the two 64-point arrays

DATA (MA) and DATA (MB) modulo (216 + 1) and store the result in DATA (MB).

Since the FNT hardware will only compute a forward transform, a reordering

of the data in the FDP is necessary to obtain an inverse transform. The

64-point array x(k) to be inverse transformed must be flipped according

to the formula

T(k) = x (< 64 - k > mod 64)

Then the forward FNT of 3T(k) is the inverse FNT of x(k).

35

(PRUGP/Uvi TO L»0 REFERENCE MULTIPLY FUR lfe BIT FMT
(MULTIPLIES DATA(MA) BT DAIA(M3)
(PUTS RESUl T IN DATA(MB)
(POLS FOUR I"ILLTIPLIES PER PASS
(FrKPlATlM«) s 2U0001
(FrHlvT((V|b) - 177777

MJLUP

riULiipn

FX2

F X<+

YIX FERMAT IO
YlX 63. 7

AI1BI2 DATA 7 7 YPX -1 7
AliBH DATA 7 7 YPX -1 7
/MIFZ/MIF /TIQ//TIQ
Bli>4 0 10 /MUL/VNUI
Al3Bi<+ DATA 7 1 /TI0//T10
/TPp//|PR YPX -1 7
AI1BI2 DAT« 7 7 YPX 3 7
HIB/TOR/MB/TLJR TlQ/TRl/TIQ/TRi

"UL/TRl/Mli^/THl /1AQ//IAQ
All3Pl^t+ o in 10 /RMI//RM1
wiB/MlF/niB/niF JMR FX? «+
TPR//TPR/ TIQ//TIU/
R?fc PA1A 7 JNR FXU 1
TR1//TRI/ TDR//TDR/
IAU//IAU/ TRT//TR1/
RMlz/RMl/ YPX -1 7
R^b DAIA 7 JNR FX«* 2
/MRF//MRF YPX -1 7

JNR FX2 «+
R4B DATA 7 YPX -1 7
H?B TAiA 7 JPX I1ULUP0 7
A11BI2 DATA 7 7 YKX -1 7
SOJ 0 2 XJP -l RTRM

XJP 0 1
/IPP//

XJP 0 1
///1PR

END

36

VII. Diagnostic Programs

In order to debug and maintain the FNT hardware, three diagnostic

programs are available:

1. Memory Test

2. Rotator Test

3. Adder/Subtractor Test

Each diagnostic program tests a separate functional element of the hardware,

and the tests form a hierarchy in that each diagnostic test relies on the proper

operation of the functional element tested by the previous diagnostics.

The memory test is used with the hardware in the memory test mode. The

purpose of the test is to check the memory element of the FNT and the data comm-

unication link between the FDP and the FNT. Data words are generated in the FDP

and sent to the FNT in blocks of 64. Then as a block of 64 words is being sent,

the words being received from the FNT are compared to the previous block sent

and checked for errors. If an error occurs, the FDP halts with information

concerning the error in the AE lights. Successful completion of the memory

test allows one to test the FNT in its transform mode with the remaining

two diagnostic tests.

Both of the transform tests use known transform pairs to test different

parts of the FNT butterfly. In the rotator test the rotation element of the CE is

subject to test. The following transform pair is used.

FNT jeW(= XW =[l i{2f ... C^n-D]
e(r) = [o ... 1 ... o]

1 th t . J

r position

37

Since the transform of e involves no additions or subtractions (except

with zero), this test serves to check out the rotation element of the butter-

fly. As before, the program halts if an error is detected and displays the

erroneous data in the AE lights.

In order to check the adder/subtractor pair in the butterfly, another

known transform pair is used.

FNT i fa 0 ... 0 b 0 ... 01 Tj = fa+b, a-b, a+b,...,a-b

32nd position

The first two elements of the transform are examined to check the addition and

subtraction. The numbers a and b are varied to check all possible cases.

The successful completion of all three diagnostic tests should guarantee that

the FNT hardware is operating properly.

38

VIII. Hardware Comparison of the FNT vs the FFT

Since one purpose in building a hardware prototype of the FNT was to

gain a working knowledge of the amount of hardware needed to implement an

FNT convolver, it is appropriate to compare this method with the standard FFT

implementation of convolution. It is impossible to make a comparison that will

apply in all cases, or even a majority of cases. Therefore, a specific application

has been chosen for comparison; namely, digital filter implementation for radar

signal processing. The problem areas to be described below should be representative

of the general problems associated with FNT convolution implementation.

The signal bandwidths encountered in radar signal processing (10-30-MHz)

require a pipeline architecture for either the FNT or the FFT [8]. Further-

more, the length of the convolution to be implemented is assumed to be large

(e.g., 512 or greater). Two cases will be considered: a length 1024 linear

convolution of real data and a length 1024 convolution of complex data. Four

measures of hardware complexity are the basis of comparison: the number of

butterflies per output point, the number of reference spectrum multiplies

per output point, the total amount of interstage delay line memory in the

forward and inverse transforms, and the total amount of reference spectrum

memory. The FFT implementation will be considered first.

For either real or complex data, it is assumed that the FFT implementation

employs an Hostage radix-2 pipeline FFT in both the forward and inverse

transforms. (Note: for real data it is possible to do a length N transform

with two length N/2 transforms and some overhead to combine the two shorter

transforms [9]. However, the overhead amounts to an additional butterfly so

39

there is little, if anything to gain using this fact in a pipeline FFT).

Much work has been done on the hardware complexity of pipeline FFT's and

the four measures of complexity we are considering here are detailed

in ref. 10 . For the case of a length 2048 pipeline FFT convolver the number

of butterflies per output point is 2 log N = 22, assuming 50% convolutional

overlap. Likewise, two reference spectrum multiplies must be done per output

point. The amount of interstage delay line memory can be calculated from

the formula

IDM = | (r + 1) (6)

where r is the radix of the transform. Thus, for two radix -2 pipelines,

the total is 3N = 6144 = 6K words of memory. Finally, the reference memory

requires 2K words of memory. Now we turn our attention to the FNT.

A pipeline FNT structure is identical to the pipeline FFT except in the

-j 2 7T k/N
butterfly where rotation by e (in the FFT case) is replaced by multiplication

by /2 . Thus, many of the results quoted above are applicable to the FNT. Since

the FNT naturally processes real input data, the cases of real and complex con-

volution require different realizations. In both cases, however, a two-

dimensional implementation of the convolution is required [4]. The two

arrays to be convolved are H and X, where

x(0) x(L) x(N-L)
x(l)

x(L-l) x(2L-l) x(N-l)
0 0 0

• • •
0 0 0

k -64 *

40

I T
L = 32

I 64 I (7a)

I

and

Fhfn (n-L+1) h(l)

h(N-l) h(L-l)
h(0) h(L)
h(l)

h(L-l)

h(N-2L+l)

(7b)

The length 1024 convolution of real signals can be implemented with a 64 x 64

transform. The input data is the array X of equation 7 and it is advantageous

to exploit the fact that half of the X array is zero by doing the row transforms

first. Hence, 96 length 64 FNT's must be computed for the entire 2-D transform.

The total number of butterflies for the complete convolution is 2 x 96 x 32 log„

12
9x2 , or 36 butterflies per output point. This is reflected in the structure

of Figure 10 where there are 36 butterflies working in parallel -- six in

12
each 64-point FNT. Since 2 reference function multiplies must be done

during each convolution, four reference multiplies per output point are required.

The interstage delay memory requirement is calculated from the individual 64-

point transforms. The first and last 64-point FNT's are computing 32 trans-

forms simultaneously. This is accomplished by making all interstage delay

lines 32 times as long as in a standard pipeline and by modifying the control

to switch at l/32nd the speed of a normal pipeline. That is, the rotation

exponents and commutator switches are only changed at every 32nd clock pulse.

The other four FNT's employ a normal pipeline structure. Applying equation 6,

the total interstage delay memory is 3 • 64 • 32 + 2 • 3 • 64 = 6K + 384 *= 6-4K

64

41

ro

cr cr CO UJ
O o UJ t-
5 l- X <t
uou cr
22
>- -

1-
3

u_
o

<I <i CO Q
_J >- 2
UJ CD cr CM
Q O ro

O h- \
UJ UJ < ~~
CD CO H f—

2 5. 3 <

i- — o o:

? LU Q LU
cr 2 cr

_i < < <

c
o

•H
+->

O
>
c
o
u

x

03
c
o

•H
I/)
C
o
E

O

O

C
0

•H
+->

N

n3

o

CM

DC
•H

42

Finally, it is easy to verify that the amount of reference function memory

is 4K.

If the signals to be convolved are complex then one possible implementation

is to handle the real and imaginary parts of the data separately. The number

of butterflies per output point, the interstage delay memory, and the reference

spectrum memory are all doubled. However, the number of real multipliers for

the reference function multiply is quadrupled because the multiplication is

complex. Table 1 summarizes the three systems versus the four hardware measures.

Notice that the FNT always requires more memory and more computational elements

than the FFT. Hardware savings are possible because most of the hardware

cost of the FFT is concentrated in the butterfly elements (up to 80%) and

because the FNT butterfly requires from one-third to one-sixth the hardware

of an FFT butterfly. These remarks apply to the FNT when the data to be convolved

arereal, but when the data are complex the situation becomes much more difficult

because all measures of hardware complexity are increased by a factor of three

or four. Therefore, we will concentrate on the case of real convolution in the

following discussion.

In order to be more specific, let's divide the hardware cost of any

convolver into two parts, the percentage of hardware for the butterfly elements

and the percentage of hardware for the rest of the system. Assume the following

relations between the FFT and the FNT

BFNT " 56/22 A BFFT (8)

FFT " FFT

(TFNT " W = V (TFFT " W (10)

43

Table 1. Hardware measures for FFT and FNT implementations of length 1024
convolution.

FFT Real or
Complex Data

FNT Real
Data

FNT Complex
Data

Butterflies 22 36 72

Reference
Multiplies 2 4 16

Interstage
Delay
Memory

6K
complex words

6-4K „
real words

12.8K
real words

Reference
Spectrum
Memory

2K
complex words

4K
real words

8K
real words

One complex word will contain approximately 25 bits for typical high-
precision radar applications.

**
One real word contains 33 bits for FNT

44

where B denotes the butterfly cost and T the total convolver cost. Letting

T„nrr = 1 the total hardware for the FNT is
r r 1

TFNT = CH A " V) y + V (11)

and the savings can be expressed as

SFNT = X " TFNT = (1 - v) + M(|^ X-v) (12)

Thus,the problem is now that of determining realistic values for the three

ratios A,u and v . If we assume that the accuracy requirements of the system

are high, then the FFT implementation should use a hybrid floating point scheme

as described in reference 6 . This study described a complex data format using

27 bits -- 11 bits each for the real and imaginary parts of the mantissa and

32
5 bits for a common exponent. In contrast the FNT would employ modulo 2 " + 1

arithmetic, implying a 33-bit data word. From this information we would like

to argue that a reasonable value for v is two. Three components must be

considered. First, the numbers of reference multiplies being compared are two

11 x 11 complex multipliers and four 32 x 32 real multipliers. Since the hard-

ware complexity of an array multiplier (which would be required at radar speeds)
2

2 4-3 ,
is proportional to n , the four real multipliers amount to about = . = Ah

times the hardware of the two complex multipliers. Secondly, the interstage

delay memory is 6K words of 27 bits each for the FFT versus 6-4K words

of 33 bits each for the FNT, or a factor of 1.3 in favor of the FFT. Similarly,

the reference function memory differs by a factor of 2.44 in favor of the FFT.

Depending on the detailed logic realization,the value of V will vary, but

45

v = 2 conveys the fact that the two-dimensional convolution using the FNT wastes

a factor of two in non-butterfly hardware. This is a fundamental limitation

of the FNT for long convolutions. At this point we can isolate the impacts

of the butterfly hardware on the possible savings for the FNT. Figure 11 shows

a plot of hardware savings versus the percentage of butterfly hardware in the

FFT (y). Several curves are shown with X as a parameter. A is the ratio of

FNT butterfly hardware to FFT butterfly hardware. The range of values for A

are typical for the high speed implementations required in radar signal processing.

The value of v was assumed to be two and if it were larger then the horizontal

intercept would be moved to the right to a higher value of y .

Independent of the exact values of A , y and v , Figure 11 clearly shows

that the FNT will provide hardware savings over the FFT only when the FFT hard-

*
ware is dominated by the CE cost as in the case of a pipeline implementation.

Furthermore, the signals to be convolved must be real, because complex data

essentially require two real FNT convolvers. Although short convolutions

(e.g., length 64) have not been discussed here, it is worth mentioning that there

is a good chance for significant hardware savings over the FFT because a one-

dimensional FNT can be used. This means that the non-butterfly hardware of the

two systems will be approximately the same (i.e.,v ~ 1) and the savings will

begin at a value of y near zero.

Note: As transform size increases the memory cost of a pipeline increases faster
than the CE cost and will become a significant fraction of the total cost for
large transforms (e.g., length 16K or 32K) .

46

o-°

CC
LU
> o

Li-
CD

o

>
<
in

LU
cc
<

Q
CC
<
I

50

RATIO OF FNT EC

40

COST TO FFT EC COST
15%/ /

/20/ /

30 / / 3<v

20 — / /

10

/ / / / 1 I

18-2-12395

0 1
50 60 70 80 90 100

RATIO OF FFT CE COST TO
TOTAL FFT CONVOLVER COST (%)

Fig. 11. Region of potential hardware savings of the FNT over the FFT for a
length 1024 aperiodic convolution of real signals.

4 7

IX. Examples of Filter Implementation

In order to demonstrate the capabilities of the FNT hardware, two filters

were implemented and the results are shown below. The first filter chosen

was a length 33 FIR lowpass filter with a passband cutoff frequency of 0.10,

stopband cutoff frequency of 0.15 and stopband attenuation equal to -33 db.

The second filter was a length 33 bandpass filter with -44.5 db attenuation in

the stopbands. The cutoff frequencies of the bandpass filter were 0.15 for

the lower stopband, 0.27 for the upper stopband and 0.20 to 0.22 for the pass-

band. Figures 12a and 12b show the ideal frequency responses of the two

filters obtained using an FFT of the impulse responses. The frequency response

is shown from F=0toF=0.5 (assuming the sampling frequency is unity) and

the horizontal lines denote steps of 20 db.

The method chosen to show the FNT implementation of convolution was to

filter a discrete time linear FM signal with the lowpass and bandpass filters.

The output of the filters traces out an approximate frequency response of the

filter, because the input linear FM sweeps across the frequency range of

interest. Figures 13a and 13b show the results of the convolution when the

input signal is represented with 7 bits. For the lowpass filter it is possible

to use 8 bits for the filter coefficients without overflowing the computation

but the bandpass filter can use only 7 bits. The response of the lowpass filter

is good approximation to the ideal response of Figure 12a and much of the

roughness can be attributed to the fact that the linear FM only traces out an

approximate spectrum. The bandpass filter (Figure 13b) is much worse because

specifications of the filter are more stringent and one less bit is available

48

for filter coefficients. The conclusion one reaches is that the FNT based on

F = 2 + 1 is marginal for the implementation of most filters.

It is possible to extend the precision of the FNT implementation in sev-

eral ways. One possibility is a method based on the Chinese Remainder Theorem

[5]. In this method, two convolutions are computed modulo two relatively

prime numbers and the results are combined term by term using the Chinese

Remainder Theorem. In particular, {h, } and {x, } are convolved modulo (2 + 1)

to obtain {y } and modulo 2 to obtain {i }. Assuming the true output {Y }
n n n

satisfies Y^: 2 • (216 + 1) then Yn can be written

Yn " \ + f- (216 + 1)

Then assuming f <2 , we have

f = (Yn - Yn) mod 25

Note that the convolution of {h, } and {x, } modulo 2 can be done with the FNT
k k

hardware by convolving {h, mod 2 } with {x, mod 2 } and taking the result

modulo 2 .

Thus, by applying the Chinese Remainder Theorem, 5 extra bits of precision

are available for the filter implementation. Figures 14a and 14b show the

response to linear FM of the lowpass and bandpass filters with 11-bit filter

coefficients. In both cases, the response is very near the ideal of Figure 12

with the slight differences due to the linear FM input signal.

49

-2-12430

LOUPftSS FILTER (-33 06)
PRSS80N0 - e.18
STOPBflMD • 0.13
FILTER LEHGTH - 33
13 BIT FILTER COEFF
IDEM. FFT SPECTRUM

:AAAAAAAAAAA

(a)

(b)

Fig. 12. Ideal filter responses.
a) lowpass filter
b) bandpass filter

50

-2-12431

LOU PftSS FILTER -33 08
i PPSS8PN0 - 0.1
\ STOPBflND - 6.15
\ FILTER LENGTH - 33
\9 BIT FILTER COEFF

(a)

BOMOPflSS FILTER,
LENGTH 33 /
-44.3 OB ATTEN/
7 BIT FILTER /

(b)

Fig. 13. Filter response with linear FN input using FNT convolution.
a) lowpass filter
b) bandpass filter

51

2-12432

(a)

BflNDPASS FILTER/\
LENGTH 33 / \
-44.3 OB fiTTEM/ \
11 BIT FILTER / \
CH REM THM / \

. / \

1
(b)

Fig. 14. Filter response with linear FN input using the FNT and the Chinese
Remainder Theorem to increase precision.

a) lowpass filter
b) bandpass filter

52

X. Summary

A hardware implementation of the Fermat Number Transform has been

built. In the course of designing this machine a new representation for

numbers modulo 2+1 was derived to facilitate the arithmetic operations

of the FNT butterfly. The design goal of a 40-MHz clock rate through the

butterfly was nearly achieved with the final reliable clock rate being

38 MHz.

The FNT system was built as a peripheral device for the FDP and

the software necessary use the FNT for convolution has been developed and

was explained here.

Finally, a comparison with the FFT for special purpose pipeline

hardware convolution has been made based on the present design. A con-

clusion of this comparison is that the FNT is a useful alternative if the

data to be filtered are real and the computational elements are a large part

of the convolver cost as in a pipeline architecture.

53

REFERENCES

1. J. M. Pollard, "The Fast Fourier Transform in a Finite Field," Math.
Comp. 25, 365-374 (1971).

2. C. M. Rader, "Discrete Convolution via Mersenne Transforms," IEEE
Trans. Computers C-21, No. 12, 1269-1273 (1972), DDC AD-7589380.

3. R.C. Agarwal and C.S. Burrus, "Fast Convolution using Fermat Number
Transforms with Applications to Digital Filtering," IEEE Trans. Acoustics,
Speech, and Signal Processing ASSP-22, No. 2, 87-97 (1974).

4. R.C. Agarwal and C.S. Burrus, "Fast One-Dimensional Digital Convolution by
Multi-Dimensional Techniques," IEEE Trans. Acoustics, Speech, and Signal
Processing ASSP-22, 1-10 (1974).

5. R. C. Agarwal and C.S. Burrus, "Number Theoretic Transforms to Implement
Fast Digital Convolution," Proc. IEEE 63, (1975).

6. R. J. Purdy, et^ al_., "Digital Signal Processor Designs for Radar Applications,"
Lincoln Laboratory Technical Note 1974-58 (December 1974), Vol. 1,
DDC AD-B001419L and Vol. 2, DDC AD-B001420L.

7. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing
(Prentice-Hall, Englewood Cliffs, New Jersey, 1974).

8. P. E. Blankenship and E. M. Hofstetter, "Digital Pulse Compression via
Fast Convolution," IEEE Trans. Acoustics, Speech, and Signal Processing
ASSP-23, No. 2, 189-201 (1975).

9. J. W. Cooley, P.A.W. Lewis, and P.D. Welch, "The Fast Fourier Transform
Algorithm: Programming Considerations in the Calculation of Sine, Cosine,
and LaPlace Transforms," J. Sound Vib. U, 315-337 (1970).

10. B. Gold and T. Bially, "Parallelism in Fast Fourier Transform Hardware,"
IEEE Trans. Audio Electroacoust. AU-21 No. 1, 5-16 (1973), DDC AD-7635730.

54

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered,

REPORT DOCUMENTATION PAGE
READ INSTRUCTIONS

BEFORE COMPLETING FORM
1. REPORT NUMBER

ESD-TR-75-149

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4- TITLE (and Subtitle)

Hardware for the Fermat Number Transform

5. TYPE OF REPORT & PERIOD COVERED

Technical Note

6. PERFORMING ORG. REPORT NUMBER

Technical Note 1975-18
7. AUTHORS;

McClellan, James H.

8. CONTRACT OR GRANT NUMBERS

F19628-73-C-0002

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Lincoln Laboratory, M. I.T.
P.O. Box 73
Lexington, MA 02173

10. PROGRAM ELEMENT, PROJECT, TASK
AREA 8. WORK UNIT NUMBERS

7X263304D215

11. CONTROLLING OFFICE NAME AND ADDRESS
Ballistic Missile Defense Program Office
Department of the Army
1320 Wilson Boulevard
Arlington, VA 22209

12. REPORT DATE

1 April 1975

13. NUMBER OF PAGES

62
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)

Electronic Systems Division
Hanscom AFB
Bedford, MA 01731

15. SECURITY CLASS, (of this report)

Unclassified

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

FNT pipeline convolvers filter implementation
FFT direct form convolvers arithmetic logic design
FDP peripheral multipliers

'0. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The design and implementation of a hardware Fermat Number Transform (FNT) is described.
The arithmetic logic design is treated in detail and a new data representation for integers modulo
a Fermat number is derived. Some results of filter implementation with the FNT are shown to
illustrate the use of the hardware. Finally, the FNT is compared with the Fast Fourier Transform
(FFT) on the basis of hardware required for a pipeline convolver.

DD F0RM 1473
1 JAN 73

EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Uhen Data Entered/

